If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-8t-2.3=0
a = 4.9; b = -8; c = -2.3;
Δ = b2-4ac
Δ = -82-4·4.9·(-2.3)
Δ = 109.08
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-\sqrt{109.08}}{2*4.9}=\frac{8-\sqrt{109.08}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+\sqrt{109.08}}{2*4.9}=\frac{8+\sqrt{109.08}}{9.8} $
| 4=5x=-26 | | 2(x=4 | | 2.3q=-4.6 | | -10=-3(x+6) | | (x+1)(x+6)=(x+4)² | | 10y+2=120 | | 3x-15+2x-30=360 | | 22/h=8/14 | | f−6/5=0 | | 3.5(x-3.2)=10.5 | | F(x)=x2-2-2x | | -2.4=a+4.1 | | u-2=6.8 | | 30x+70=250 | | 44=d+29 | | 1/4(4x+13)=31 | | C=2.6k+5 | | (x)14+8x=30 | | 1/2x+14=2.5x-4 | | 24+2j=168 | | 200+15x=305 | | 4y−2y=4 | | b+3=7.4 | | 6.1=s/5 | | xx7=90 | | 11)15(x-3)+2=60 | | 7x-8+3x+18=180 | | 1/3a=-5a= | | -10=2.8+c | | 5z-7+4z=-18 | | 20=-6h+4h | | v+1.8=-5.1 |